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Abstract 
 
In this paper, a methodology is presented for synthesis of planar link’s geometry 

for prescribed inertia parameter values subject to given geometric constraints and 
having the flexibility of varying topology if desired. Synthesis starts with an initial 
geometry that satisfies the geometric constraints but not the inertial requirements. As 
the geometry evolves, topology has to change according to the geometric constraints. 
The challenge here is to have a controlled change of topology to avoid splitting of 
domain into multiple components. A novel method of achieving control over the 
topological evolution of the domain is identified in this work using two types of 
transformations namely domain preserving transformation and domain splitting 
transformation. Link geometry is represented as a set of non-intersecting closed 
polygons consisting of a set of vertices and directed edges (loops), one of which is the 
outer boundary and the others are holes. The desired inertial properties of the domain 
are achieved through iterative gradient based optimization.Results obtained from 
kinematic synthesis provide joint locations, outcome of link geometry synthesis for 
interference free motion provides the allowable domain; these together form the set of 
geometric constraints. The results of dynamic synthesis provide the optimal (target) 
values of inertial parameters for the present geometry synthesis procedure. The 
methodology presented in this work enables exploration of multiplicity of solutions. 

Keywords:Geometry Synthesis, Dynamic Balancing, Shape Optimization 

1 Introduction 
Engineering design of a mechanism is incomplete without the detailed geometry of its 
links. During kinematic analysis and synthesis, a mechanism is usually represented by a 
simplified schematic representation and the true shape of the links is not of concern. On 
the other hand, the inertial parameters of the links, viz., mass, centre of mass and moment 
of inertia essentially depend on the geometric shape of the links and dictate the dynamic 
characteristics, viz. shaking force, shaking moment, driving torque, time of travel, etc. of 
the mechanism. As reported by [5], mechanism balancing problem is old and well 
defined, one that aims at minimizing the effects of shaking force and shaking moments. 
Most of the techniques found in literatureare based on parametric mass distribution [1, 9], 
counter-weight addition [6] or use of additional links [10]. The dynamic synthesis 
procedures typically determine location of the point masses; the inverse problem of 
equivalent point-mass to link shape is unaddressed in literature. The subject of shape and 
topology synthesis aims to determine the explicit shapes using finite elements methods 
[8]. Expansion of its scope to satisfaction of instantaneous motion characteristics has led 
to the concept of compliant mechanisms. The techniques are not suitable for synthesis for 
inertial performance due to the local nature of the structural responses and the global 
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nature of the inertial characteristics. Both grid and front propagation (level set) based 
techniques [7] leads to uncontrolled change in topology of the domain which is 
unacceptable for the present problem because a set of unconnected domains which satisfy 
inertial requirements are practically meaningless. Procedures exist for efficient 
determination of simple geometric shapes for the links of a mechanism, primarily aiming 
towards interference free motion, which results in identifying a feasible material domain 
for each link’s geometry [4]. However, the effect of the result geometry on the dynamics 
of the mechanism is not considered. Thus it is necessary to explore link shapes that have 
the necessary inertial properties and still are non-interfering. 

The work presented proposes an optimization based methodology for the synthesis 
of link’s geometry where a given initial shape of a link is systematically modified such 
that its inertial properties match the desired values without losing its geometric 
connectedness. Kinematic dimensions and link-interference characteristics are preserved 
through suitable constraint modelling. This is achieved through the development of novel 
topology control transformations. 

2 Link’s Geometry Representation 
Link’s geometry is represented as a set of non-intersecting closed polygons (loops), 
one of which is the outer boundary and the others are holes in the component. Each 
polygon is a set of directed edges connecting the vertices (points on the boundary 
contours) in such a manner that material is on the left when travelled along the edge in 
the established direction. Fig. 1 shows an illustration of this representation. Each vertex 
Vi is given an index and is located by two coordinates (xi, yi) with i being the index 
value. Each edge Ei connects two of the vertices Vi and Vi+1. 

Figure 1: Vertex-edge representation of link’s boundary contours 

3 Topology Evolution 
Geometry synthesis starts with an initial geometry that satisfies the kinematic and 
geometric constraints but not the inertial requirements. The geometry of a link can 
have arbitrary topology but has to be a single, potentially multiply connected, domain. 
As the geometry evolves during synthesis, topology could change within the limits of 
geometric constraints. In structural topology optimization using level set methods, it is 
observed that the single component connectedness of the material domain is ensured 
by the underlying field variables which influence the objective function during 
optimization. There is no geometry dependent physical variable which affects the 
link’s inertia parameters. Hence the procedures developed for structural optimality 
does not suit the requirements of link’s geometry synthesis for inertia requirements. 
The primary challenge here is to have a controlled change of topology to avoid 
splitting of domain into multiple components. 

Computation of inertia parameters requires that the boundary contours do not 
intersect. During geometric evolution, boundary contours come close to each other and 
tend to intersect each other resulting in either merging or splitting of domains. The 
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following paragraphs present two geometric transformations, hitherto unavailable in 
literature, that enable local geometric test for global topological inference. 

3.1 Domain preserving transformation (DPT) 
Fig.2 (a) shows a material domain bounded by a single directed contour C1, such that 
material is onto the left when traversed along this curve. Region M indicates that 
boundary contour is too close to itself at a certain step of geometry modification. Under 
such situation, the boundary is modified locally as shown in the Fig. 2(a) which results 
in the creation of a hole. This transformation is termed as domain preserving 
transformation (DPT), because the material domain still remains as a single component 
though it gets multiply connected. It can be observed that the edge-swapping process in 
effect adds a small amount of material to the body. For the polygonal domains the 
transformation is done as follows. Fig. 2(b) shows a coarse vertex-edge representation 
using 21 edges (or vertices), where vertices V5 and V13 are close to each other. This 
indicates that a rearrangement of the edges attached to these vertices will change the 
topology. There are two sets of neighbouring vertices to V5 and V13. If vertices V6 and 
V12 are closer than V4 and V14, the altered vertex-edge connectivity would be as in Fig. 
2(c); otherwise, it would be as in Fig. 2(d). 

Figure 2: (a) Domain preserving transformation, (b) Vertex-edge representation of 
boundary curves, (c) (d) two possible states after transformation 

3.2 Domain splitting transformation (DST) 
Fig.3 (a) shows a material domain bounded by a single directed contour C1, such that 
material is onto the left when traversed along this curve. Region denoted by N 
indicates that boundary contour is on the verge of self-intersection. The edge swapping 
operation, as mentioned above, splits the domain into multiple components, if the 
boundary is a single contour. Hence this transformation is termed as domain splitting 
transformation (DST).Contrary to DPT, a small patch of area is removed from the 
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original domain during DST. Fig. 3(c) and 3(d) show the two alternate changes to a 
polygonal B-rep of the link geometry.  

Figure 3: (a) Domain splitting transformation, (b) Vertex-edge representation of 
boundary curves, (c) (d) two possible states after transformation 

3.3 Transformations of multiply connected domains 
When a domain is multiply connected, it would have multiple boundary curves (loops). 
In that case, if DST is applied to segments from different loops, it merges the two loops 
into one; it does not split the domain and the number of holes reduces by one. This is an 
acceptable change. But DST applied on segments of the same boundary curve, the 
domain splits. Because of the edge based data structure, loop is implicit in the 
representation; for the sake of efficiency, the loop-index for every edge is maintained in 
the data structure and appropriately altered when such a case for DST arises. 

4 Geometry Design Procedure 
The process of geometry design starts with an initial geometry which satisfies the 
constraints but does not have desired inertial characteristics. The boundary contours 
of this geometry shall evolve through an optimization procedure that minimizes the 
difference between the link’s inertia parameters with that of the desired ones. 
Iterative gradient based optimization is used in the present work. Alternate methods 
can also be used. 

4.1 Design variables 
Consider a closed contour C Є R2 evolving in space. The evolution of C with respect to 
time can then be described by the following equation. 
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𝜕𝜕𝑪𝑪
𝜕𝜕𝜕𝜕

=  𝛼𝛼𝒕⃗𝒕 + 𝛽𝛽𝒏𝒏��⃗  (1) 𝜕𝜕𝑪𝑪
𝜕𝜕𝜕𝜕

=  𝛽̅𝛽𝒏𝒏��⃗  (2) 

where𝒕⃗𝒕 is the tangent, 𝒏𝒏��⃗  is the outward normal, 𝛼𝛼 and 𝛽𝛽 are arbitrary functions 
describing the tangential and the normal speeds of the contour. It is known from [3] 
that for each choice of speed functions (𝛼𝛼,𝛽𝛽) there exist other speed functions (0,𝛽̅𝛽) 
such that the resulting contour shapes are equivalent. The tangential component, 𝛼𝛼, 
affects only the parameterization of the contour while 𝛽𝛽 changes the contour’s shape 
and Eq. (1) can be simplified to Eq. (2).This means contour evolves only in normal 
direction. In vertex-edge representation of the contour, each vertex of the contour is 
allowed to move in the normal direction which is computed from the two neighbouring 
vertices, thus resulting in change of shape and hence a change in the inertial 
parameters. The amount of movement for each vertex in their corresponding normal 
direction is governed by 𝛽̅𝛽and hence it gives the set of design variables. For the 
polygonal contours, the line passing through the current vertex and perpendicularto 
theline joining its adjacent vertices has been taken here as the estimated normal 
direction. An initially smooth contour may become rough. Over a number of iterations 
this effect often gets accentuated leading to theoretically valid but practically unusable 
shapes. To overcome this problem a moving average filter is applied after every fixed 
number of iterations for reducing irregularities in the contour. This changes the inertial 
properties, but it gets compensated with the progress of optimization. 

4.2 Objective function and constraints 
The objective of the present endeavour is to minimize the difference between the inertial 
parameter values of the evolving contour with respect to the desired ones. The parameters 
of relevance here are mass (or area, A), coordinates of centre of mass (CG) and polar 
moment of inertia (I) about CG.  Each link is substituted with dynamically equivalent two-
point mass model whose parameters are equivalent area (assuming constant thickness of 
each link)  and coordinates of the points i.e. (Ai, xi, yi) with i=1, 2. Three (A1, A2, x1) of the 
six parameters are assigned as in Eq. (3-4); the other three (y1, x2, y2) are determined from 

the equivalence relations given in Eq. (5-7), where kG = �𝐼𝐼
𝐴𝐴
 is the radius of gyration. 

𝐴𝐴1 =  𝐴𝐴2 =  
𝐴𝐴
2

 (3) 𝑥𝑥1 =  
𝐶𝐶𝐶𝐶𝑥𝑥

2
 (4) 𝑦𝑦1 =  𝐶𝐶𝐶𝐶𝑦𝑦 +  �(𝑘𝑘𝐺𝐺2 − (

𝐶𝐶𝐶𝐶𝑥𝑥
2

)2) (5) 

𝑥𝑥2 =  
3𝐶𝐶𝐶𝐶𝑥𝑥

2
 (6) 𝑦𝑦2 =  2𝐶𝐶𝐶𝐶𝑦𝑦 − 𝑦𝑦1 (7) 

 
 

These values of the two-point mass parameters are used in objective function 
evaluation as shown in Eq. (8) which is the sum of square of the percentage of error in 
each individual parameter value, where (𝑦𝑦1

∗, 𝑥𝑥2
∗,𝑦𝑦2

∗) are the point mass parameter values 
corresponding to the desired inertia parameters. 

 𝑓𝑓�𝛽̅𝛽� = �(
𝑦𝑦1
∗ −  𝑦𝑦1

𝑦𝑦1
∗ )2 + (

𝑥𝑥2
∗ −  𝑥𝑥2

𝑥𝑥2
∗ )2 + (

𝑦𝑦2
∗ −  𝑦𝑦2

𝑦𝑦2
∗ )2� ∗ 10000 (8) 

4.3 Results 
In this work iterative optimization is used as a method of achieving the desired values of 
inertia parameters. Programming has been done in MATLAB®; the inbuilt optimization 
toolbox (fmincon routine) has been used. Target values for inertial parameters are taken 
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from known geometry modeled using CAD software (Pro/E). Geometric constraints 
along with kinematic constraints are included for establishing the versatility of geometry 
synthesis procedure. 

4.3.1 Unconstrained synthesis 
Usually, simple shapes are assigned as nominal geometry of links which may not have the 
desired dynamic characteristics. Fig. 4 shows the initial geometry of a binary link, its 
evolution through intermediate stages and the final geometry satisfying the given 
requirement. The progress of the objective function with iteration is also shown. Edges in 
green color indicate those in the proximity of joint locations and in red color indicate their 
proximity with the boundary contour.No topological change was observed during shape 
evolution. Table 1 shows the result numerically. Average deviation of the values obtained 
is 0.09%. For the sake of brevity, numerical tables have been omitted for other examples. 

Figure 4: (a) Binary link initial geometry, (b) Final geometry after 134 iterations, 
(c) Objective function vs. Iteration, (d) Evolution of geometry 

Table 1: Results for unconstrained geometry synthesis of binary link 
Inertia parameter Desired values Initial Geometry Final Geometry 

Area (mm2) 103896 95455.12 103784.05 
CGx (mm) 250 250 249.94 
CGy (mm) -138 0 -138.15 

I (mm4) 12168194000 10254849228.21 12156025737.7 

4.3.2 Constrained synthesis 
The objective is to illustrate the geometric evolution in the presence of infeasible regions 
as constraints. Following are the different topological constraints used in the synthesis. 

Fixed topology  
Fig. 5 shows the result of geometry synthesis for a binary link including infeasible 
regions in the design space with fixed topology constraint. Distance value set for 
proximity checks between the boundary contours manifests in the minimum thickness 
of the component near the holes as in Fig. (5d). Average deviation in this case is 0.12%. 

10th iteration 30th iteration 50th iteration 

70th iteration 90th iteration 110th iteration 
(d) 

(a) (b) (c) 
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Minimal topology  
Fig. 6 shows the result for a binary link with infeasible regions in design space and a 
minimal topology constraint; i.e. none of the existing holes are allowed to disappear. 
The initial domain has three infeasible regions. In this particular example the value of 
objective function did not converge; the average deviation in the final result is 6.71%. 

Unconstraint topology  
Fig. 7 shows the case where no topological constraint is imposed. This means that the 
number of holes can either decrease or increase but the procedure ensures that the 
evolving geometry is always a single component domain. The initial geometry has two 
holes containing infeasible areas. In this case objective function converged; the final 
geometry did not have any holes. The average deviation of the obtained values is 0.25%. 

Figure 5: Geometry synthesis with fixed topology. (a) Initial geometry with 
infeasible regions, (b) Final geometry after 32 iterations, (c) Objective function vs. 
Iteration, (d) Evolution of geometry 

Figure 6: Geometry synthesis with persistent holes. (a) Initial geometry with 
infeasible regions, (b) Final geometry after 79 iterations, (c) Objective function vs. 
Iteration, (d) Evolution of geometry 

10th iteration 20th iteration 30th iteration 
(d) 

Joint locations 

Infeasible regions 

Boundary of  
design domain 

Link 
geometry 

(a) (b) (c) 

70th iteration 40th iteration 10th iteration 
(d) 

Joint locations 

Infeasible regions 

Boundary of 
design domain 

Link 
geometry 

(a) 

Change in topology 

(b) (c) 
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4.3.3 Non-uniqueness of Solution 
Wenoticed that shape changes significantly even when target parameters are almost 
reached. To explore this aspect further, optimization process was run with low 
tolerance large iterations. It can be observed in Fig.11 that beyond 100 iterations, 
error in the result is too small for any practical purpose. The final geometry that is 
obtained almost looks like the one from which the values of inertial parameters are 
taken from. Hence this methodology has the potential for shape reconstruction. It is 
intriguing that the intermediate geometries in Fig. 8(d) have shapes similar to that of 
a crank at the joint locations. These cases resemble the sector type cylindrical 
counter-weights used in [2] for balancing of linkages. The shapes are however 
significantly different. This establishes that a continuous family of shapes are 
available that satisfies the kinematic, geometric and inertial requirements. 

Figure 7: Geometry synthesis with unconstrained topology. (a) Initial geometry with 
infeasible regions, (b) Final geometry after 28 iterations, (c) Objective function vs. 
Iteration, (d) Evolution of geometry 

Figure 8: Geometry evolution beyond convergence: inertia-equivalent shape family. (a) 
Binary link initial geometry, (b) Final geometry after 500 iterations, (c) Objective 

16th iteration 24th iteration 8th iteration 
(d) 

Joint locations Boundary of 
design domain 

Infeasible regions Link geometry 

(a) (b) (c) 

desired 
CG location 

Joint locations 

initial 
CG location (a) (b) 

(c) 

20th iteration 50th iteration 
80th iteration (d) 

150th iteration 270th iteration 
400th iteration 

(e) 
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function vs. Iteration, (d) Intermediate geometries, (e) Multiple geometries with desired 
values of inertial parameters 

5 Conclusions 
A generic methodology was presented for the purpose of geometry synthesis with the 
ability of controlling the topological evolution of the domain represented as a set of 
closed polygons. Two novel geometric transformations have been introduced for 
controlling topology using local relation on edge segments in proximity. Shape 
modification is achieved by moving the vertices in normal direction to the boundary 
contour at each vertex. The proposed method of geometric evolution ensures that the 
resulting geometry be always a single continuum of material that can be multiply 
connected. The methodology admits easy imposition of different types of topological 
constraints. The method per say is generic enough for use in any problem requiring 
control on topology in its result. The work reported is believed to be the first of its kind 
in the field of mechanism design aiming towards explicit determination of geometry of 
each link for inertia requirement. 
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