
15
th National Conference on Machines and Mechanisms NaCoMM2011-190

A Framework for Analysis and Dynamic Visualisation
of Mechanisms

Arjun Nagarajan, Sandipan Bandyopadhyay

Abstract

Position analysis and the evaluation of various performance indices are inte-
gral parts of iterative design of mechanisms using computers. To perform these
tasks, one relies upon either a commercially available software or self-written
codes. While the first option suffers from the lack of flexibility in terms of in-
tegration with other external modules such as an optimiser, the second onere-
quires significant amounts of time and effort in terms of planning, programming,
debugging, and code maintenance. In this paper, a unique solution to this problem
is proposed, via the introduction of a meta-programming language called MML,
developed for the specific purpose of modelling and analysing mechanisms. A
few lines of codes in MML is enough to describe a mechanism, solve its position
kinematic problem, and also to generate automatically programmes in C language
that can be either compiled externally to create stand-alone analysis modules, or
be integrated with any other system accepting a C module. Further, to complete
the framework as a stand-alone analysis package, a Qt-based visualisation inter-
face is added. It allows dynamic manipulation of the design parameters viathe
GUI elements, and updates the screen with the corresponding effects onmotion
and/or some pre-defined output function or performance index in the real time.
The features and the usage of the framework is illustrated with the example of a
Stephenson-III six-bar mechanism. The framework, however, is capable of han-
dling more generic mechanisms and is designed to be easily extendable. Itis
hoped that the mechanism design community would find this framework of some
interest and utility.

Keywords: Planar mechanisms, Graph theory, Dynamic visualisation,flex, Bison,
Qt, Meta-programming

1 Introduction

Computerised analysis has become a routine part of the mechanism design process.
With the availability of faster computers and better algorithms, there is a perceptible
drift from the traditional close-form geometric synthesismethods to more general, nu-
merical optimisation-based design procedures. Some of thekey steps in such a design
process is the position analysis, as well as the visualisation of the intermediate/final
results. While there are plenty of commercial packages available for that purpose,
(e.g.,ADAMS, RecurDyn etc.), there are hardly any tools which provide the user a

Arjun Nagarajan
Department of Engineering Design, IIT Madras, Chennai - 36, E-mail:arjun.2048@gmail.com.

Sandipan Bandyopadhyay
Department of Engineering Design, IIT Madras, Chennai - 36, E-mail:sandipan@iitm.ac.in.

1

15
th National Conference on Machines and Mechanisms NaCoMM2011-190

mathematical model of the mechanism that can be exported from the system, and in-
tegrated in another arbitrary tool (e.g., an optimiser), oranalysed separately by the
designer without restricting herself within the APIs (Application Programming Inter-
face) exposed by a certain given software. On the other hand,writing one’s own code
for the design and analysis gives complete flexibility in terms of choosing appropriate
algorithms at each stage, i.e., kinematic analysis, designobjectives and constraints,
optimisation algorithm etc. However, it is typically cumbersome to programme all of
these from the scratch.

The present work tries to bridge this gap in a novel manner. The objective is to
create an analysis and visualisation framework backed by a new computerlanguage
designed for the exclusive purpose of modelling mechanisms. The name of the lan-
guage reflects this fact: “Mechanism Modelling Language” or“MML” in short. Using
this language, the user would be very easily be able to construct a mechanism from
simple elements such as points, lines and joints etc. Once the mechanism is created,
the algorithms built into the system try to find suitable (pre-programmed) solvers for
the position kinematics of the mechanism. If successful, the system is capable of solv-
ing the position kinematics problem, including identifying its different branches. With
this solution, it can animate the mechanism through a visualisation interface. More
importantly, it can construct theloop-closureequations for the user, and even generate
functions (inC programming language) for solving the position kinematicsproblem.
These functions can then be readily integrated in any optimiser/analysis tool, which
provides aC-based API, or the user’s own code for further analysis.Moreover, as the
code is generated by the system from pre-defined and tested modules, it is guaran-
teed to be free of bugs and errors. Thus, the proposed framework delivers a unique
combination of flexibility, productivity, as well as reliability.

Position analysis of planar mechanisms on a computer has been studied for several
decades. Shu and Radcliffe [1] were among the first to suggestthat position analysis of
a complex mechanism can be done by notionally decomposing itinto simpler modules,
and solving these modules in the right sequence. Many others(e.g., [2]) have extended
this idea and presented procedures to derive equations for the component module.
Understanding the connectivity between the different links is a prerequisite for the
modular decomposition. It turns out that using various connectivity matrices, it is
possible to identify mechanisms of a giventopology(or kinematic structure) [3, 4].
The framework under discussion employs similar concepts. To create the firstproof-
of-concept(PoC) prototype of the system, only planar mechanisms with revolute joints
are considered. Further, this paper is confined to the discussion of six-bar mechanisms
only.

The paper is structured as follows: in Section 2, different graph-based representa-
tion of mechanisms are described very briefly. In Section 3, some features and uses of
MML are illustrated with examples. The dynamic visualisation interface is described
in Section 4. The conclusions are presented in Section 5.

2 Representing a mechanism

One of the key requirements of achieving the objectives described above is to have a
mathematical model representing mechanisms on a computer.It is essential that the

2

15
th National Conference on Machines and Mechanisms NaCoMM2011-190

computers canunderstand, analyse, store and retrieve mechanisms. It turns out that
mechanisms can be easily represented asgraphs, which are very much amenable to
computerised analysis. In this work, therefore, mechanisms are represented as graph
objects,undirected graphsin particular. The revolute joints are represented as nodes,
and the links as edges (excluding the grounded links). Thus,an adjacency matrix
or anadjacency listcoupled with additional attributes of the nodes (i.e., joints) viz.
input, fixed, movable etc. represent the mechanism adequately. These representations
are interchangeable, and both are used in the algorithms developed. The adjacency
matrix is useful in establishing properties of the mechanism, like the characteristic
polynomial, and the adjacency list is used in algorithms finding the shortest path etc.

2l

l3

b1 (0,0) b2 0(l , 0)
l

l1 θ3

2

0
0

1
2

4Y

X
3θ1

θ

(a) A planer revolute-jointed four-bar mechanism

(b) Adjacency matrixA (c) Adjacency listAL

Figure 1: (a) Schematic of the four-bar mechanism, (b) its adjacency matrix, and (c)
the adjacency list representation

3 Elements of the MML

A small and intuitive language has been developed for the specific objective of mod-
elling and analysing mechanisms. This language provides a simple and concise means
to describe and analyse mechanisms. The user now has to writeonly a few lines of

3

15
th National Conference on Machines and Mechanisms NaCoMM2011-190

code in MML to build and analyse a mechanism, instead of writing separate programs
for each mechanism. To develop an interpreter for this new language, CASE tools such
asflex, a fast lexical analyser [5], andBison, a parser generator [6], has been used. Bi-
son requires angrammardefinition, which it converts into a parser that can be coupled
with the lexer generated by the flex module.

3.1 Features of the language

Attempts have been made to keep the keywords of the language as intuitive and close
to a natural language (i.e., English, in this case) as possible. For example, a set of
keywords and their corresponding actions is given in table 1.

Table 1: A partial list of key-words recognised in MML

add to add a link or point
base(x,y) base point at (x,y)
point(x,y) movable point at (x,y)
link(p0,p1) link connecting points p0 and p1
setinput(n) set n as input node
show display list of variables used
shownodes display list of nodes
showlinks display list of links
amat display adjacency matrix
alist display adjacency list
solve solve the mechanism
plot(X,Y) plot X vs. Y

3.2 Building a mechanism using MML

One of the most important aspects of this framework is to represent the mechanism
in a computer. For this, the simplest way is to mimic the way a mechanism is drawn
on paper: the user builds it from smaller building blocks such as fixed base points,
links and joints. Multi-loop mechanisms can be built up in stages. For example, one
can construct a six-bar mechanism by first creating a four-bar, and then adding a RR-
dyad between the coupler point and another point on the fixed base. The process is
illustrated through the example of aStephenson-IIImechanism shown in figure 2. The
following few lines suffice in creating the Stephenson-III (see Fig. 2), consisting of 7
joints and 7 links. The first set of commands corresponds to adding nodes, and the
next set adds links connecting these nodes.

add base(0,0); //Add node 0, a fixed point
add point(0.1,1); //Add node 1, a moving point
add point(0.5,1.5); //Add node 2, a moving point
add point(1,2.2); //Add node 3, a moving point
add base(2.5,2); //Add node 4, a fixed point

4

15
th National Conference on Machines and Mechanisms NaCoMM2011-190

n	0 n	6

n	1

n	2 n	4

l6

n	3 θ3

l2
l3

n	5
4l

θ

Y

l0

0

θ4

θ2
θ6

X

l51l

Figure 2: Schematic of the Stephenson-III mechanism with node and link designations

add point(1,1.2); //Add node 5, a moving point
add base(1.4,0); //Add node 6, a fixed point

add edge(0,1); //Add link 0, by connecting nodes 0 and 1
add edge(1,2); //Add link 1, by connecting nodes 1 and 2
add edge(2,3); //Add link 2, by connecting nodes 2 and 3
add edge(3,4); //Add link 3, by connecting nodes 3 and 4
add edge(1,5); //Add link 4, by connecting nodes 1 and 5
add edge(5,2); //Add link 5, by connecting nodes 5 and 2
add edge(5,6); //Add link 6, by connecting nodes 5 and 6

setinput(0); //set node 0 as the input (actuated) joint

The last line designates the node “0” as the actuated one. These input lines are parsed
and processed to generate, internally, a list of nodes (nodelist), a list of edges (edgelist),
and the adjacency matrix is also formed. The description of the mechanism is thus
complete.

3.3 Framing loop-closure equations

By definition, all the links in a mechanism has pre-defined, predictable motion if the
motion of the input link is given. This is made sure mathematically by framing the
loop-closureequations and solving for the position of thepassive, i.e., non-actuated

5

15
th National Conference on Machines and Mechanisms NaCoMM2011-190

links from these equations. To do this from the above model ofthe mechanism, one
needs to identifyall the loops in the mechanism, and choose the correct number of
shortestloops from them.

A loop in a mechanism is equivalent to apath1 in a graph. Generally loop-
closure equations are formed between the base nodes. Thus framing loops is equiva-
lent to identifying shortest paths between the base nodes. For example, consider the
Stephenson-III mechanism shown in Fig.2. Here the shortestpath between the base
nodesn0 andn6 is given by the sequencen0 - n1 - n5 - n6. Thus the loop-closure
equations are framed based on this path:

n0x + l0 cos θ0 + l4 cos θ4 + l6 cos θ6 − n6x = 0

n0y + l0 sin θ0 + l4 sin θ4 + l6 sin θ6 − n6y = 0

The system is capable of finding the shortest loop and the corresponding equation
without any manual intervention.

3.4 Solver identification

The solution of the loop-closure equationsautomatically(i.e., without any manual in-
tervention) is one of the most important requirements for any mechanism modelling
framework. In this case, it is achieved by decomposing the mechanism intoknown
components, for each of which a dedicated solver is available. The solver is capa-
ble of findingall the solutions, as it employs pre-defined analytical solutions to these
components. This, is a key difference between the present work and standard commer-
cial software. The latter typically use numerical solvers for the non-linear problem of
position kinematics, yielding only one of the multiple possible solutions2.

In this paper, the solutions are restricted to mechanisms which can be decom-
posed into RR-dyads (or four-bars) and rigid coupler links.However, it may be noted
that algorithm is designed to be modular, and as such, if other solvers are added, the
algorithm can map them to the target mechanisms/components. The output of this
algorithm is an ordered list of nodes, and the appropriate solver to be used for each
node in the case of a successful termination, and a failure message otherwise. The
algorithm takes care of the dependency of the position of nodes on the other nodes,
the order of the output list of the nodes is the same order in which the nodes have
to be solved. To illustrate the process, the process log generated while applying it to
the Stephenson-III mechanism is shown below. Here, “FIXED”implies a base node,
“INPUT” an actuated node, “RRDYAD” a node belonging to two R-jointed links with
known end points, “COUPLER” a part of a rigid coupler link.

Mechanism can be solved
Node 0 dependants: Solver: FIXED
Node 4 dependants: Solver: FIXED

1Path is anopen walkin which no vertices are revisited.
2For the same reason, the capability of the framework is limited.It can only solve the position kinematics

problem if the mechanism can be decomposed into components, foreach of which a solver is available.
A large number of planar mechanisms, and indeed a majority of those used in machine components, are
typically four-bar and six-bar mechanisms; hence from a practical standpoint, this limitation is not very
significant.

6

15
th National Conference on Machines and Mechanisms NaCoMM2011-190

Node 6 dependants: Solver: FIXED
Node 1 dependants: 0 Solver: INPUT
Node 5 dependants: 1 6 Solver: RRDYAD
Node 2 dependants: 1 5 Solver: COUPLER
Node 3 dependants: 2 4 Solver: RRDYAD

Solvers for these components are readily available, the mechanism can be solved by
calling the appropriate solvers in the above sequence. In addition to finding the solu-
tions to the position kinematics problem in this manner, a key objective of this work is
to generateC code embedding the solvers in it, so as to generate a stand aloneC code,
which when compiled, would create a simulator for the given mechanism. It is this
meta-programmingthat makes this framework absolutely unique in the mechanism
domain (to the best of the authors’ knowledge)3.

4 Visualisation interface

A basic visualisation interface, capable of allowing dynamic manipulation of the mech-
anism’s geometric attributes (i.e., link lengths, base points etc.), has been included in
the framework for the sake of completeness. It has been developed using the non-
commercial version of theQt GUI libraries. A screen-shot of the same showing the
Stephenson-III mechanism along with the coupler-curve of the corresponding coupler
point of the lower four-bar is shown in Fig. (3). It is very well-known that while blind-

Figure 3: Screen-shot of the visualisation interface

3Implementation of this part of the framework is still under progress.

7

15
th National Conference on Machines and Mechanisms NaCoMM2011-190

fold mathematical optimisation can produce excellent setsof design parameters, much
is learnt by studying the effect of the variation of the different geometric parameters.
In many cases, it is possible to arrive at anacceptablesolution by manually chang-
ing the parameters, while keeping track of the objectives and constraints. Objectives
and constraints can be programmed inC and integrated with the system. Some generic
constraints are included in the system; e.g., while modelling four-bar mechanisms, one
may choose to remain within the domain of Grashof mechanisms, and thus by select-
ing an on-screen option, can automatically define such limits on the range of the link
lengths that Grashof’s condition is satisfied.

5 Conclusions

In this work, an attempt was made to contribute to the broadergoal of designing mech-
anisms by creating a new framework for analysis and dynamic visualisation. Mech-
anisms were represented as adjacency lists and adjacency matrices of the joints. Al-
gorithms to frame loop-closure equations were developed. Algorithms to solve the
position kinematics problem of a planar mechanism by decomposing it into known
modules were demonstrated. These algorithms were tested onsample problems and
results were reported. A language to describe and handle mechanisms was concep-
tualised and implemented. The impact of the meta-programming approach in terms
of the significant reduction in the effort to develop and debug the position kinematics
code have been demonstrated.

A visualisation interface, to aid the user in studying the performance of mecha-
nism while dynamically varying the design parameters, was implemented.

The work reported here is still in its initial stage of development, and many exten-
sions have already been planned. It is hoped that once completed, the framework may
help the mechanism community in their design/analysis activities.

References

[1] C. H. Suh and C. W. Radcliffe,Kinematics and Mechanism Design. Wiley, 1978.

[2] G. L. Kinzel and C. Chang, “The analysis of planar linkages using a modular
approach,”Mechanism and Machine Theory, vol. 19, no. 1, pp. 165 – 172, 1984.

[3] T. S. Mruthyunjaya and M. R. Raghavan, “Structural analysis of kinematic chains
and mechanisms based on matrix representation,”Journal of Mechanical Design,
vol. 101, no. 3, pp. 488–494, 1979.

[4] J. Uicker Jr. and A. Raicu, “A method for the identification and recognition of
equivalence of kinematic chains,”Mechanism and Machine Theory, vol. 10, no. 5,
pp. 375 – 383, 1975.

[5] Flex manual,Lexical Analysis With Flex.

[6] Bison manual,Bison - GNU parser generator.

8

