15™ National Conference on Machines and Mechanisms NaCoMM2011-190

A Framework for Analysis and Dynamic Visualisation
of Mechanisms

Arjun Nagarajan, Sandipan Bandyopadhyay

Abstract

Position analysis and the evaluation of various performance indicestare in
gral parts of iterative design of mechanisms using computers. Torpethese
tasks, one relies upon either a commercially available software or séémvr
codes. While the first option suffers from the lack of flexibility in terms of in-
tegration with other external modules such as an optimiser, the secon-one
quires significant amounts of time and effort in terms of planning, rogning,
debugging, and code maintenance. In this paper, a unique solution tochism
is proposed, via the introduction of a meta-programming language caliéd, M
developed for the specific purpose of modelling and analysing mechsnié
few lines of codes in MML is enough to describe a mechanism, solve its positio
kinematic problem, and also to generate automatically programmes in Glgegu
that can be either compiled externally to create stand-alone analysis module
be integrated with any other system accepting a C module. Further, to demple
the framework as a stand-alone analysis package, a Qt-based visomlister-
face is added. It allows dynamic manipulation of the design parametetheria
GUI elements, and updates the screen with the corresponding effentst@am
and/or some pre-defined output function or performance index inethletime.
The features and the usage of the framework is illustrated with the exarngle o
Stephenson-IIl six-bar mechanism. The framework, howevegjslale of han-
dling more generic mechanisms and is designed to be easily extendalite. It
hoped that the mechanism design community would find this frameworbroés
interest and utility.

Keywords: Planar mechanisms, Graph theory, Dynamic visualisatiex Bison
Qt, Meta-programming

1 Introduction

Computerised analysis has become a routine part of the mischalesign process.
With the availability of faster computers and better algoris, there is a perceptible
drift from the traditional close-form geometric synthesisthods to more general, nu-
merical optimisation-based design procedures. Some deysteps in such a design
process is the position analysis, as well as the visuadisaif the intermediate/final
results. While there are plenty of commercial packages aailfor that purpose,
(e.g.,ADANMS, Recur Dyn etc.), there are hardly any tools which provide the user a

Arjun Nagarajan
Department of Engineering Design, IIT Madras, Chennai - 3fd:arjun.2048@gmail.com.

Sandipan Bandyopadhyay
Department of Engineering Design, IIT Madras, Chennai - 3fd:sandipan@iitm.ac.in.

15™ National Conference on Machines and Mechanisms NaCoMM2011-190

mathematical model of the mechanism that can be exported the system, and in-
tegrated in another arbitrary tool (e.g., an optimiser)awoalysed separately by the
designer without restricting herself within the APIs (Ajggltion Programming Inter-
face) exposed by a certain given software. On the other hvariiihg one’s own code
for the design and analysis gives complete flexibility inmterof choosing appropriate
algorithms at each stage, i.e., kinematic analysis, desijectives and constraints,
optimisation algorithm etc. However, it is typically cunmseme to programme all of
these from the scratch.

The present work tries to bridge this gap in a novel mannee dijjective is to
create an analysis and visualisation framework backed mwacomputedanguage
designed for the exclusive purpose of modelling mechanishine name of the lan-
guage reflects this fact: “Mechanism Modelling Language™iIL” in short. Using
this language, the user would be very easily be able to amtsér mechanism from
simple elements such as points, lines and joints etc. Orcenfithanism is created,
the algorithms built into the system try to find suitable ¢{pregrammed) solvers for
the position kinematics of the mechanism. If successfelsifstem is capable of solv-
ing the position kinematics problem, including identifgiits different branches. With
this solution, it can animate the mechanism through a visai@dn interface. More
importantly, it can construct tHeop-closureequations for the user, and even generate
functions (inC programming language) for solving the position kinemagicsblem.
These functions can then be readily integrated in any opéinanalysis tool, which
provides aC-based API, or the user's own code for further analysis.\deee as the
code is generated by the system from pre-defined and testddl@so it is guaran-
teed to be free of bugs and errors. Thus, the proposed frarkeledivers a unique
combination of flexibility, productivity, as well as relidity.

Position analysis of planar mechanisms on a computer hasshedied for several
decades. Shu and Radcliffe [1] were among the first to sugfgtgposition analysis of
a complex mechanism can be done by notionally decomposimig isimpler modules,
and solving these modules in the right sequence. Many otbeys [2]) have extended
this idea and presented procedures to derive equationdhidocamponent module.
Understanding the connectivity between the differentdiigk a prerequisite for the
modular decomposition. It turns out that using various emtimity matrices, it is
possible to identify mechanisms of a givespology(or kinematic structure) [3, 4].
The framework under discussion employs similar conceptscré&ate the firsproof-
of-concep(PoC) prototype of the system, only planar mechanisms witblute joints
are considered. Further, this paper is confined to the dsmusf six-bar mechanisms
only.

The paper is structured as follows: in Section 2, differeapy-based representa-
tion of mechanisms are described very briefly. In SectiomBesfeatures and uses of
MML are illustrated with examples. The dynamic visualieatinterface is described
in Section 4. The conclusions are presented in Section 5.

2 Representing a mechanism

One of the key requirements of achieving the objectivesri®=t above is to have a
mathematical model representing mechanisms on a comgtisressential that the

15™ National Conference on Machines and Mechanisms NaCoMM2011-190

computers camnderstandanalyse, store and retrieve mechanisms. It turns out that
mechanisms can be easily representedraphs which are very much amenable to
computerised analysis. In this work, therefore, mechasiare represented as graph
objects,undirected graphén particular. The revolute joints are represented as nodes
and the links as edges (excluding the grounded links). Taosdjacency matrix

or anadjacency listcoupled with additional attributes of the nodes (i.e., {gjrviz.
input, fixed, movable etc. represent the mechanism addgu@iteese representations
are interchangeable, and both are used in the algorithneaped. The adjacency
matrix is useful in establishing properties of the mechanibke the characteristic
polynomial, and the adjacency list is used in algorithmsifigdhe shortest path etc.

Y 4

|
\)6
0fe} = TR =
b, (0,0) by(lo, 0)

(a) A planer revolute-jointed four-bar mechanism

0O 1 0 0 O 1

1 01 0 1 0 2 4
0O 1 0 1 1 1 4 4
g @& 1 9 O 2

0O 1 1 0 O 1 2

(b) Adjacency matrixA (c) Adjacency listAf,

Figure 1: (a) Schematic of the four-bar mechanism, (b) ifachcy matrix, and (c)
the adjacency list representation

3 Elements of the MML

A small and intuitive language has been developed for theifspebjective of mod-
elling and analysing mechanisms. This language provides@eand concise means
to describe and analyse mechanisms. The user now has toonhte few lines of

15™ National Conference on Machines and Mechanisms NaCoMM2011-190

code in MML to build and analyse a mechanism, instead of mgitieparate programs
for each mechanism. To develop an interpreter for this neguage, CASE tools such
asflex a fast lexical analyser [5], ariBison a parser generator [6], has been used. Bi-
son requires agrammardefinition, which it converts into a parser that can be cadiple
with the lexer generated by the flex module.

3.1 Features of the language

Attempts have been made to keep the keywords of the langsaigéuitive and close
to a natural language (i.e., English, in this case) as plessior example, a set of
keywords and their corresponding actions is given in table 1

Table 1: A patrtial list of key-words recognised in MML

add to add a link or point

base(x,y) base point at (x,y)

point(x,y) movable point at (x,y)
link(pO,pl1) link connecting points p0O and pl
setinput(n) set n as input node

show display list of variables used
shownodes display list of nodes

showlinks display list of links

amat display adjacency matrix
alist display adjacency list
solve solve the mechanism

plot(X,Y) plotXvs.Y

3.2 Building a mechanism using MML

One of the most important aspects of this framework is toasgmt the mechanism
in a computer. For this, the simplest way is to mimic the wayexihanism is drawn

on paper: the user builds it from smaller building blockstsas fixed base points,
links and joints. Multi-loop mechanisms can be built up iag&s. For example, one
can construct a six-bar mechanism by first creating a foyreval then adding a RR-
dyad between the coupler point and another point on the figseé.bThe process is
illustrated through the example ofstephenson-llinechanism shown in figure 2. The
following few lines suffice in creating the Stephenson-$ié¢ Fig. 2), consisting of 7
joints and 7 links. The first set of commands corresponds tlingdhodes, and the
next set adds links connecting these nodes.

add base(0,0); /1 Add node 0, a fixed point
add point(0.1,1); /1 Add node 1, a novi ng point
add point(0.5,1.5); /1 Add node 2, a novi ng point
add point(1,2.2); /1 Add node 3, a noving point
add base(2.5, 2); /1 Add node 4, a fixed point

15™ National Conference on Machines and Mechanisms NaCoMM2011-190

Y

7/7 / X

Figure 2: Schematic of the Stephenson-Ill mechanism witteramd link designations

add point(1,1.2); /1 Add node 5, a noving point

add base(1.4,0); /1 Add node 6, a fixed point

add edge(0,1); //Add link O, by connecting nodes 0 and 1
add edge(1,2); //Add link 1, by connecting nodes 1 and 2
add edge(2,3); //Add link 2, by connecting nodes 2 and 3
add edge(3,4); //Add link 3, by connecting nodes 3 and 4
add edge(1,5); //Add link 4, by connecting nodes 1 and 5
add edge(5,2); //Add link 5 by connecting nodes 5 and 2
add edge(5,6); //Add link 6, by connecting nodes 5 and 6

setinput(0); //set node 0 as the input (actuated) joint

The last line designates the nod¥ as the actuated one. These input lines are parsed
and processed to generate, internally, a list of nodedélis), a list of edgesddgelis},

and the adjacency matrix is also formed. The descriptiohefrhechanism is thus
complete.

3.3 Framing loop-closure equations

By definition, all the links in a mechanism has pre-defineédpmtable motion if the
motion of the input link is given. This is made sure mathenaly by framing the
loop-closureequations and solving for the position of thassivei.e., non-actuated

15™ National Conference on Machines and Mechanisms NaCoMM2011-190

links from these equations. To do this from the above mod¢hefmechanism, one
needs to identifyall the loops in the mechanism, and choose the correct number of
shortestoops from them.

A loop in a mechanism is equivalent topath' in a graph. Generally loop-
closure equations are formed between the base nodes. Emisdy loops is equiva-
lent to identifying shortest paths between the base nodessexample, consider the
Stephenson-1lIl mechanism shown in Fig.2. Here the shopiztst between the base
nodesngy andng is given by the sequence, - n, - n5 - ng. Thus the loop-closure
equations are framed based on this path:

Noz + lgcos by + 14 cos 0y + lgcosOg — ngz =0
Noy + losin by + 14 sin 04 + lg sin s — ngy = 0

The system is capable of finding the shortest loop and theegponding equation
without any manual intervention.

3.4 Solver identification

The solution of the loop-closure equaticaagtomatically(i.e., without any manual in-
tervention) is one of the most important requirements for mechanism modelling
framework. In this case, it is achieved by decomposing thehaeism intoknown
components, for each of which a dedicated solver is availabhe solver is capa-
ble of findingall the solutions, as it employs pre-defined analytical sahstim these
components. This, is a key difference between the presenktaval standard commer-
cial software. The latter typically use numerical solvensthe non-linear problem of
position kinematics, yielding only one of the multiple pitas solutions.

In this paper, the solutions are restricted to mechanismishatan be decom-
posed into RR-dyads (or four-bars) and rigid coupler litkewever, it may be noted
that algorithm is designed to be modular, and as such, ifratbleers are added, the
algorithm can map them to the target mechanisms/companéiite output of this
algorithm is an ordered list of nodes, and the appropriateesto be used for each
node in the case of a successful termination, and a failusesage otherwise. The
algorithm takes care of the dependency of the position oksaih the other nodes,
the order of the output list of the nodes is the same order iiciwthe nodes have
to be solved. To illustrate the process, the process logrgetewhile applying it to
the Stephenson-IIl mechanism is shown below. Here, “FIXEDlies a base node,
“INPUT” an actuated node, “RRDYAD” a node belonging to twgd®ated links with
known end points, “COUPLER” a part of a rigid coupler link.

Mechani sm can be sol ved
Node O dependants: Sol ver: FI XED
Node 4 dependants: Sol ver: FI XED

1path is aropen walkin which no vertices are revisited.

2For the same reason, the capability of the framework is limitezin only solve the position kinematics
problem if the mechanism can be decomposed into componentsaébr of which a solver is available.
A large number of planar mechanisms, and indeed a majority oéthesed in machine components, are
typically four-bar and six-bar mechanisms; hence from a pralcstandpoint, this limitation is not very
significant.

15™ National Conference on Machines and Mechanisms NaCoMM2011-190

Node 6 dependants: Sol ver: FI XED
Node 1 dependants: Sol ver: | NPUT
Node 5 dependants: 6 Sol ver: RRDYAD
Node 2 dependants: 5 Solver: COUPLER
Node 3 dependants: 4 Sol ver: RRDYAD

NF,PF,O

Solvers for these components are readily available, théhamesm can be solved by
calling the appropriate solvers in the above sequence. ditiand to finding the solu-
tions to the position kinematics problem in this manner,yadgective of this work is
to generat€C code embedding the solvers in it, so as to generate a stanel@btmde,
which when compiled, would create a simulator for the giveechanism. It is this
meta-programminghat makes this framework absolutely unique in the mechanis
domain (to the best of the authors’ knowledte)

4 Visualisation interface

A basic visualisation interface, capable of allowing dyi@manipulation of the mech-
anism’s geometric attributes (i.e., link lengths, basenfsoétc.), has been included in
the framework for the sake of completeness. It has been @gselusing the non-
commercial version of th€ GUI libraries. A screen-shot of the same showing the
Stephenson-1Il mechanism along with the coupler-curvéneftiorresponding coupler
point of the lower four-bar is shown in Fig. (3). It is very w&hown that while blind-

=8 =]

| sixbar

Dynamic
Manipulation-

\unku ten (2] Linkt 100 [2] Linkz 120 (2] Links 144 (%

Desion | Output |

Coupler
curyve

{.I

e e [P (e
[7] Enable Grashof Constraint] 2{Lmas + Lmin) = szm_—_________; (LOHL14L24L3) =524
s - {/
constraint Animate
Tracking mechanism

Figure 3: Screen-shot of the visualisation interface

SImplementation of this part of the framework is still under pess.

15™ National Conference on Machines and Mechanisms NaCoMM2011-190

fold mathematical optimisation can produce excellentgetiesign parameters, much
is learnt by studying the effect of the variation of the diéfiet geometric parameters.
In many cases, it is possible to arrive atasteptablesolution by manually chang-
ing the parameters, while keeping track of the objectivab@mstraints. Objectives
and constraints can be programmediand integrated with the system. Some generic
constraints are included in the system; e.g., while maugflour-bar mechanisms, one
may choose to remain within the domain of Grashof mechaniantsthus by select-
ing an on-screen option, can automatically define suchdimnitthe range of the link
lengths that Grashof’s condition is satisfied.

5 Conclusions

In this work, an attempt was made to contribute to the brogdatof designing mech-
anisms by creating a new framework for analysis and dynaitsigalisation. Mech-
anisms were represented as adjacency lists and adjacemggenaf the joints. Al-
gorithms to frame loop-closure equations were developeldiorRhms to solve the
position kinematics problem of a planar mechanism by deasing it into known
modules were demonstrated. These algorithms were testedrople problems and
results were reported. A language to describe and handleéanesns was concep-
tualised and implemented. The impact of the meta-programgrapproach in terms
of the significant reduction in the effort to develop and dgthe position kinematics
code have been demonstrated.

A visualisation interface, to aid the user in studying thefgmenance of mecha-
nism while dynamically varying the design parameters, wgdemented.

The work reported here is still in its initial stage of degiwent, and many exten-
sions have already been planned. It is hoped that once ctedptae framework may
help the mechanism community in their design/analysivitiets.

References

[1] C. H. Suh and C. W. Radcliff&inematics and Mechanism Desigwiley, 1978.

[2] G. L. Kinzel and C. Chang, “The analysis of planar linkagesing a modular
approach,Mechanism and Machine Theomol. 19, no. 1, pp. 165 —172, 1984.

[3] T. S. Mruthyunjaya and M. R. Raghavan, “Structural asaof kinematic chains
and mechanisms based on matrix representatimfnal of Mechanical Design
vol. 101, no. 3, pp. 488-494, 1979.

[4] J. Uicker Jr. and A. Raicu, “A method for the identificatiand recognition of
equivalence of kinematic chaindylechanism and Machine Theompol. 10, no. 5,
pp. 375 - 383, 1975.

[5] Flex manuallexical Analysis With Flex

[6] Bison manualBison - GNU parser generator

